Skip to contents

This package contains data sets used to compile vignettes and other documentation in Delphi R Packages. The goal is to avoid calls to the Delphi Epidata API, and deposit some examples here for easy offline use.

Installation

You can install the development version of epidatasets like so:

# install.packages("pak")
pak::pkg_install("cmu-delphi/epidatasets")

Contents

This package contains a number of different datasets, along with the code used to generate them. See the Source Code if you want to examine the necessary API calls.

All data included here is in epi_df format, which is a subclass of tbl_df which is a subclass of data.frame. The data will print nicely if you load the epiprocess or tibble packages, but these are not required to access or inspect the data sets. For example,

library(epidatasets)
head(cases_deaths_subset)
#>   geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#> 1        ca 2020-03-01       0.0032659        0.0000000     6    1.285714
#> 2        ca 2020-03-02       0.0043545        0.0000000     4    1.714286
#> 3        ca 2020-03-03       0.0061689        0.0000000     6    2.428571
#> 4        ca 2020-03-04       0.0097976        0.0003629    11    3.857143
#> 5        ca 2020-03-05       0.0134264        0.0003629    10    5.285714
#> 6        ca 2020-03-06       0.0199582        0.0003629    18    7.857143

Compared to

library(tibble)
cases_deaths_subset
#> # A tibble: 4,026 × 6
#>    geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#>  * <chr>     <date>               <dbl>            <dbl> <dbl>       <dbl>
#>  1 ca        2020-03-01         0.00327         0            6        1.29
#>  2 ca        2020-03-02         0.00435         0            4        1.71
#>  3 ca        2020-03-03         0.00617         0            6        2.43
#>  4 ca        2020-03-04         0.00980         0.000363    11        3.86
#>  5 ca        2020-03-05         0.0134          0.000363    10        5.29
#>  6 ca        2020-03-06         0.0200          0.000363    18        7.86
#>  7 ca        2020-03-07         0.0294          0.000363    26       11.6 
#>  8 ca        2020-03-08         0.0341          0.000363    19       13.4 
#>  9 ca        2020-03-09         0.0410          0.000726    23       16.1 
#> 10 ca        2020-03-10         0.0468          0.000726    22       18.4 
#> # ℹ 4,016 more rows

Compared to

library(epiprocess)
cases_deaths_subset
#> An `epi_df` object, 4,026 x 6 with metadata:
#> * geo_type  = state
#> * time_type = day
#> * as_of     = 2023-06-07 16:50:07.8681
#> 
#> # A tibble: 4,026 × 6
#>    geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#>  * <chr>     <date>               <dbl>            <dbl> <dbl>       <dbl>
#>  1 ca        2020-03-01         0.00327         0            6        1.29
#>  2 ca        2020-03-02         0.00435         0            4        1.71
#>  3 ca        2020-03-03         0.00617         0            6        2.43
#>  4 ca        2020-03-04         0.00980         0.000363    11        3.86
#>  5 ca        2020-03-05         0.0134          0.000363    10        5.29
#>  6 ca        2020-03-06         0.0200          0.000363    18        7.86
#>  7 ca        2020-03-07         0.0294          0.000363    26       11.6 
#>  8 ca        2020-03-08         0.0341          0.000363    19       13.4 
#>  9 ca        2020-03-09         0.0410          0.000726    23       16.1 
#> 10 ca        2020-03-10         0.0468          0.000726    22       18.4 
#> # ℹ 4,016 more rows

Note that an epi_df comes with metadata (visible in that final version), that describes the observation frequency, time_type, the unit of geographical measurement, geo_type and the data vintage, as_of. For more on these, see the epiprocess.

For the more visually inclined, that particular data set contains reported 7-day averaged cases and deaths per capita for a handful of US states.