API docs: https://cmu-delphi.github.io/delphi-epidata/api/nidss_flu.html
Obtains information on outpatient inluenza-like-illness from Taiwan National Infectious Disease Statistical System.
Usage
pub_nidss_flu(
regions,
epiweeks = "*",
...,
issues = NULL,
lag = NULL,
fetch_args = fetch_args_list()
)Arguments
- regions
character. List of regions to fetch.
- epiweeks
timeset. Epiweeks to fetch. Supportsepirange()and defaults to all ("*") dates. Format asepirange(startweek, endweek), where startweek and endweek are of the form YYYYWW (string or numeric).- ...
not used for values, forces later arguments to bind by name
- issues
timeset. Optionally, the issue(s) of the data to fetch. See the "Data Versioning" section for details.- lag
integer. Optionally, the lag of the issues to fetch. See the "Data Versioning" section for details.
- fetch_args
fetch_args. Additional arguments to pass tofetch(). Seefetch_args_list()for details.
Data Versioning
Several endpoints support retrieving historical versions of the data. The following parameters control this and are mutually exclusive (only one can be provided at a time).
as_of: (Date) Retrieve the data as it was on this date.issues:timesetRetrieve data from a specific issue date or range of dates.lag: (integer) Retrieve data with a specific lag from its issue date.
If none of these is specified, the most recent version of the data is returned.
See vignette("versioned-data") for details and more ways to specify
versioned data.
Examples
pub_nidss_flu(regions = "taipei", epiweeks = epirange(201501, 201601))
#> # A tibble: 53 × 7
#> release_date region issue epiweek lag visits ili
#> <date> <chr> <date> <date> <dbl> <dbl> <dbl>
#> 1 2016-01-05 Taipei 2015-12-27 2015-01-04 51 16698 0.96
#> 2 2016-01-12 Taipei 2016-01-03 2015-01-11 51 17146 1.03
#> 3 2016-01-19 Taipei 2016-01-10 2015-01-18 51 17817 1.07
#> 4 2016-01-26 Taipei 2016-01-17 2015-01-25 51 18168 1.13
#> 5 2016-02-02 Taipei 2016-01-24 2015-02-01 51 18321 1.11
#> 6 2016-02-02 Taipei 2016-01-24 2015-02-08 50 19799 1.08
#> 7 2016-02-02 Taipei 2016-01-24 2015-02-15 49 11879 1.25
#> 8 2016-02-02 Taipei 2016-01-24 2015-02-22 48 17397 1.19
#> 9 2016-02-02 Taipei 2016-01-24 2015-03-01 47 17849 1.07
#> 10 2016-02-02 Taipei 2016-01-24 2015-03-08 46 17441 1.08
#> # ℹ 43 more rows