API docs: https://cmu-delphi.github.io/delphi-epidata/api/covidcast_signals.html
The primary endpoint for fetching COVID-19 data, providing access to a wide variety of signals from a wide variety of sources. See the API documentation link above for more. Delphi's COVIDcast public dashboard is powered by this endpoint.
Usage
pub_covidcast(
source,
signals,
geo_type,
time_type,
geo_values = "*",
time_values = "*",
...,
as_of = NULL,
issues = NULL,
lag = NULL,
fetch_args = fetch_args_list()
)Arguments
- source
string. The data source to query (see: https://cmu-delphi.github.io/delphi-epidata/api/covidcast_signals.html).
- signals
string. The signals to query from a specific source (see: https://cmu-delphi.github.io/delphi-epidata/api/covidcast_signals.html).
- geo_type
string. The geographic resolution of the data (see: https://cmu-delphi.github.io/delphi-epidata/api/covidcast_geography.html).
- time_type
string. The temporal resolution of the data (either "day" or "week", depending on signal).
- geo_values
character. The geographies to return. Defaults to all ("*") geographies within requested geographic resolution (see: https://cmu-delphi.github.io/delphi-epidata/api/covidcast_geography.html.).
- time_values
timeset. Dates or epiweeks to fetch. Supportsepirange()and defaults to all ("*") dates.- ...
not used for values, forces later arguments to bind by name
- as_of
Date. Optionally, the as-of date for the issues to fetch. See the "Data Versioning" section for details.
- issues
timeset. Optionally, the issue(s) of the data to fetch. See the "Data Versioning" section for details.- lag
integer. Optionally, the lag of the issues to fetch. See the "Data Versioning" section for details.
- fetch_args
fetch_args. Additional arguments to pass tofetch(). Seefetch_args_list()for details.
Data Versioning
Several endpoints support retrieving historical versions of the data. The following parameters control this and are mutually exclusive (only one can be provided at a time).
as_of: (Date) Retrieve the data as it was on this date.issues:timesetRetrieve data from a specific issue date or range of dates.lag: (integer) Retrieve data with a specific lag from its issue date.
If none of these is specified, the most recent version of the data is returned.
See vignette("versioned-data") for details and more ways to specify
versioned data.
Examples
pub_covidcast(
source = "jhu-csse",
signals = "confirmed_7dav_incidence_prop",
geo_type = "state",
time_type = "day",
geo_values = c("ca", "fl"),
time_values = epirange(20200601, 20200801)
)
#> # A tibble: 124 × 15
#> geo_value signal source geo_type time_type time_value direction issue
#> <chr> <chr> <chr> <fct> <fct> <date> <dbl> <date>
#> 1 ca confirme… jhu-c… state day 2020-06-01 NA 2023-03-10
#> 2 fl confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 3 ca confirme… jhu-c… state day 2020-06-02 NA 2023-03-10
#> 4 fl confirme… jhu-c… state day 2020-06-02 NA 2023-03-03
#> 5 ca confirme… jhu-c… state day 2020-06-03 NA 2023-03-10
#> 6 fl confirme… jhu-c… state day 2020-06-03 NA 2023-03-03
#> 7 ca confirme… jhu-c… state day 2020-06-04 NA 2023-03-10
#> 8 fl confirme… jhu-c… state day 2020-06-04 NA 2023-03-03
#> 9 ca confirme… jhu-c… state day 2020-06-05 NA 2023-03-10
#> 10 fl confirme… jhu-c… state day 2020-06-05 NA 2023-03-03
#> # ℹ 114 more rows
#> # ℹ 7 more variables: lag <dbl>, missing_value <dbl>, missing_stderr <dbl>,
#> # missing_sample_size <dbl>, value <dbl>, stderr <dbl>, sample_size <dbl>
pub_covidcast(
source = "jhu-csse",
signals = "confirmed_7dav_incidence_prop",
geo_type = "state",
time_type = "day",
geo_values = "*",
time_values = epirange(20200601, 20200801)
)
#> # A tibble: 3,472 × 15
#> geo_value signal source geo_type time_type time_value direction issue
#> <chr> <chr> <chr> <fct> <fct> <date> <dbl> <date>
#> 1 ak confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 2 al confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 3 ar confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 4 as confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 5 az confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 6 ca confirme… jhu-c… state day 2020-06-01 NA 2023-03-10
#> 7 co confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 8 ct confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 9 dc confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> 10 de confirme… jhu-c… state day 2020-06-01 NA 2023-03-03
#> # ℹ 3,462 more rows
#> # ℹ 7 more variables: lag <dbl>, missing_value <dbl>, missing_stderr <dbl>,
#> # missing_sample_size <dbl>, value <dbl>, stderr <dbl>, sample_size <dbl>