API docs: https://cmu-delphi.github.io/delphi-epidata/api/flusurv.html.
Obtain information on influenza hospitalization rates from the Center of Disease Control.
See also https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html.
Usage
pub_flusurv(
locations,
epiweeks = "*",
...,
issues = NULL,
lag = NULL,
fetch_args = fetch_args_list()
)Arguments
- locations
character. List of locations to fetch. See geographic codes for details.
- epiweeks
timeset. Epiweeks to fetch. Supportsepirange()and defaults to all ("*") dates. Format asepirange(startweek, endweek), where startweek and endweek are of the form YYYYWW (string or numeric).- ...
not used for values, forces later arguments to bind by name
- issues
timeset. Optionally, the issue(s) of the data to fetch. See the "Data Versioning" section for details.- lag
integer. Optionally, the lag of the issues to fetch. See the "Data Versioning" section for details.
- fetch_args
fetch_args. Additional arguments to pass tofetch(). Seefetch_args_list()for details.
Details
The list of location argument can be found in https://github.com/cmu-delphi/delphi-epidata/blob/main/labels/flusurv_locations.txt.
Data Versioning
Several endpoints support retrieving historical versions of the data. The following parameters control this and are mutually exclusive (only one can be provided at a time).
as_of: (Date) Retrieve the data as it was on this date.issues:timesetRetrieve data from a specific issue date or range of dates.lag: (integer) Retrieve data with a specific lag from its issue date.
If none of these is specified, the most recent version of the data is returned.
See vignette("versioned-data") for details and more ways to specify
versioned data.
Examples
pub_flusurv(locations = "ca", epiweeks = epirange(201701, 201801))
#> # A tibble: 31 × 34
#> release_date location season issue epiweek lag rate_age_0
#> <date> <chr> <chr> <date> <date> <dbl> <dbl>
#> 1 2025-11-03 CA 2016-17 2025-09-14 2017-01-01 454 3.4
#> 2 2025-11-03 CA 2016-17 2025-09-14 2017-01-08 453 2.9
#> 3 2025-11-03 CA 2016-17 2025-09-14 2017-01-15 452 3.4
#> 4 2025-11-03 CA 2016-17 2025-09-14 2017-01-22 451 2
#> 5 2025-11-03 CA 2016-17 2025-09-14 2017-01-29 450 2
#> 6 2025-11-03 CA 2016-17 2025-09-14 2017-02-05 449 2
#> 7 2025-11-03 CA 2016-17 2025-09-14 2017-02-12 448 2
#> 8 2025-11-03 CA 2016-17 2025-09-14 2017-02-19 447 0.5
#> 9 2025-11-03 CA 2016-17 2025-09-14 2017-02-26 446 2
#> 10 2025-11-03 CA 2016-17 2025-09-14 2017-03-05 445 0.5
#> # ℹ 21 more rows
#> # ℹ 27 more variables: rate_age_1 <dbl>, rate_age_2 <dbl>, rate_age_3 <dbl>,
#> # rate_age_4 <dbl>, rate_overall <dbl>, rate_age_5 <dbl>, rate_age_6 <dbl>,
#> # rate_age_7 <dbl>, rate_age_18t29 <dbl>, rate_age_30t39 <dbl>,
#> # rate_age_40t49 <dbl>, rate_age_5t11 <dbl>, rate_age_12t17 <dbl>,
#> # rate_age_lt18 <dbl>, rate_age_gte18 <dbl>, rate_age_1t4 <dbl>,
#> # rate_age_gte75 <dbl>, rate_age_0tlt1 <dbl>, rate_race_white <dbl>, …