Based on the longest lag period in the recipe,
get_test_data()
creates an epi_df
with columns geo_value
, time_value
and other variables in the original dataset,
which will be used to create features necessary to produce forecasts.
Value
An object of the same type as x
with columns geo_value
, time_value
, any additional
keys, as well other variables in the original dataset.
Details
The minimum required (recent) data to produce a forecast is equal to the maximum lag requested (on any predictor) plus the longest horizon used if growth rate calculations are requested by the recipe. This is calculated internally.
Examples
# create recipe
rec <- epi_recipe(covid_case_death_rates) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_lag(case_rate, lag = c(0, 7, 14))
get_test_data(recipe = rec, x = covid_case_death_rates)
#> An `epi_df` object, 840 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31
#>
#> # A tibble: 840 × 4
#> geo_value time_value case_rate death_rate
#> * <chr> <date> <dbl> <dbl>
#> 1 ak 2021-12-17 23.1 1.19
#> 2 al 2021-12-17 15.6 0.290
#> 3 ar 2021-12-17 23.4 0.467
#> 4 as 2021-12-17 0 0
#> 5 az 2021-12-17 41.2 1.04
#> 6 ca 2021-12-17 16.9 0.158
#> 7 co 2021-12-17 30.5 0.578
#> 8 ct 2021-12-17 64.8 0.120
#> 9 dc 2021-12-17 50.4 0.140
#> 10 de 2021-12-17 67.9 0.333
#> # ℹ 830 more rows