Package index
-
arx_forecaster() - Direct autoregressive forecaster with covariates
-
cdc_baseline_forecaster() - Predict the future with the most recent value
-
climatological_forecaster() - Climatological forecaster
-
flatline_forecaster() - Predict the future with today's value
-
arx_classifier() - Direct autoregressive classifier with covariates
Forecaster modifications
Constructors to modify forecaster arguments and utilities to produce epi_workflow objects
-
arx_args_list() - ARX forecaster argument constructor
-
arx_class_args_list() - ARX classifier argument constructor
-
cdc_baseline_args_list() - CDC baseline forecaster argument constructor
-
climate_args_list() - Climatological forecaster argument constructor
-
flatline_args_list() - Flatline forecaster argument constructor
-
arx_class_epi_workflow() - Create a template
arx_classifierworkflow
-
arx_fcast_epi_workflow() - Create a template
arx_forecasterworkflow
-
step_adjust_latency() - Adapt the model to latent data
-
step_climate() - Calculate a climatological variable based on the history
-
step_epi_naomit() - Unified NA omission wrapper function for recipes
-
step_epi_lag()step_epi_ahead() - Create a shifted predictor
-
step_epi_slide() - Calculate a rolling window transformation
-
step_growth_rate() - Calculate a growth rate
-
step_lag_difference() - Calculate a lagged difference
-
step_population_scaling() - Convert raw scale predictions to per-capita
-
step_training_window() - Limits the size of the training window to the most recent observations
-
layer_add_forecast_date() - Post-processing step to add the forecast date
-
layer_add_target_date() - Post-processing step to add the target date
-
layer_cdc_flatline_quantiles() - CDC Flatline Forecast Quantiles
-
layer_naomit() - Omit
NAs from predictions or other columns
-
layer_point_from_distn() - Converts distributional forecasts to point forecasts
-
layer_population_scaling() - Convert per-capita predictions to raw scale
-
layer_predict() - Prediction layer for post-processing
-
layer_predictive_distn()deprecated - Returns predictive distributions
-
layer_quantile_distn() - Returns predictive quantiles
-
layer_residual_quantiles() - Creates predictions based on residual quantiles
-
layer_threshold() - Lower and upper thresholds for predicted values
-
layer_unnest() - Unnest prediction list-cols
-
epi_recipe() - Create a epi_recipe for preprocessing data
-
epi_workflow() - Create an epi_workflow
-
add_epi_recipe()remove_epi_recipe()update_epi_recipe() - Add/remove/update the
epi_recipeof anepi_workflow
-
fit(<epi_workflow>) - Fit an
epi_workflowobject
-
frosting() - Create frosting for post-processing predictions
-
add_frosting()remove_frosting()update_frosting() - Add/remove/update the
frostingof anepi_workflow
-
adjust_frosting() - Adjust a layer in an
epi_workfloworfrosting
-
apply_frosting() - Apply post-processing to a fitted workflow
-
extract_frosting() - Extract the frosting object from a workflow
-
tidy(<frosting>) - Tidy the result of a frosting object
-
slather() - Spread a layer of frosting on a fitted workflow
-
predict(<epi_workflow>) - Predict from an epi_workflow
-
augment(<epi_workflow>) - Augment data with predictions
-
get_test_data() - Get test data for prediction based on longest lag period
-
forecast(<epi_workflow>) - Produce a forecast from an epi workflow and it's training data
Modifying forecasting epiworkflows
Modify or inspect an existing recipe, workflow, or frosting. See also the article on the topic
-
adjust_epi_recipe() - Adjust a step in an
epi_workfloworepi_recipe
-
Add_model()Remove_model()Update_model()add_model()remove_model()update_model() - Add a model to an
epi_workflow
-
add_layer() - Add layer to a frosting object
-
extract_layers()is_layer()validate_layer()detect_layer() - Extract, validate, or detect layers of frosting
-
update(<layer>) - Update post-processing
layer
-
autoplot(<epi_workflow>)autoplot(<canned_epipred>)plot(<epi_workflow>)plot(<canned_epipred>) - Automatically plot an
epi_workfloworcanned_epipredobject
Parsnip engines
Prediction methods not available in the general parsnip repository
-
quantile_reg() - Quantile regression
-
smooth_quantile_reg() - Smooth quantile regression
-
grf_quantiles - Random quantile forests via grf
-
flusight_hub_formatter() - Format predictions for submission to FluSight forecast Hub
-
clean_f_name() - Create short function names
-
check_enough_data() - Check the dataset contains enough data points.
-
pivot_quantiles_longer()pivot_quantiles_wider() - Pivot a column containing
quantile_predto explicit rows or columns
-
dist_quantiles()deprecated - A distribution parameterized by a set of quantiles
-
quantile(<quantile_pred>) - Quantiles from a distribution
-
extrapolate_quantiles() - Extrapolate the quantiles to new quantile levels
-
nested_quantiles()deprecated - Turn a vector of quantile distributions into a list-col
-
weighted_interval_score() - Compute weighted interval score