Implements prediction on a fitted epi_workflow
. One may want different
types of prediction, and to potentially apply this after some amount of
postprocessing. This would typically be the first layer in a frosting
postprocessor.
Arguments
- frosting
a frosting object
- type
A single character value or
NULL
. Possible values are"numeric"
,"class"
,"prob"
,"conf_int"
,"pred_int"
,"quantile"
,"time"
,"hazard"
,"survival"
, or"raw"
. WhenNULL
,predict()
will choose an appropriate value based on the model's mode.- opts
A list of optional arguments to the underlying predict function that will be used when
type = "raw"
. The list should not include options for the model object or the new data being predicted.- ...
Additional
parsnip
-related options, depending on the value oftype
. Arguments to the underlying model's prediction function cannot be passed here (use theopts
argument instead). Possible arguments are:interval
: fortype
equal to"survival"
or"quantile"
, should interval estimates be added, if available? Options are"none"
and"confidence"
.level
: fortype
equal to"conf_int"
,"pred_int"
, or"survival"
, this is the parameter for the tail area of the intervals (e.g. confidence level for confidence intervals). Default value is0.95
.std_error
: fortype
equal to"conf_int"
or"pred_int"
, add the standard error of fit or prediction (on the scale of the linear predictors). Default value isFALSE
.quantile
: fortype
equal toquantile
, the quantiles of the distribution. Default is(1:9)/10
.eval_time
: fortype
equal to"survival"
or"hazard"
, the time points at which the survival probability or hazard is estimated.
- id
a string identifying the layer
Examples
library(dplyr)
jhu <- covid_case_death_rates %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_naomit()
wf <- epi_workflow(r, linear_reg()) %>% fit(jhu)
latest <- jhu %>% filter(time_value >= max(time_value) - 14)
# Predict layer alone
f <- frosting() %>% layer_predict()
wf1 <- wf %>% add_frosting(f)
p1 <- predict(wf1, latest)
p1
#> An `epi_df` object, 3 x 3 with metadata:
#> * geo_type = state
#> * time_type = day
#> * other_keys = geo_value, time_value
#> * as_of = 2022-05-31
#>
#> # A tibble: 3 × 3
#> geo_value time_value .pred
#> * <chr> <date> <dbl>
#> 1 ak 2021-12-31 0.245
#> 2 ca 2021-12-31 0.313
#> 3 ny 2021-12-31 0.295
# Prediction with interval
f <- frosting() %>% layer_predict(type = "pred_int")
wf2 <- wf %>% add_frosting(f)
p2 <- predict(wf2, latest)
p2
#> An `epi_df` object, 3 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * other_keys = geo_value, time_value
#> * as_of = 2022-05-31
#>
#> # A tibble: 3 × 4
#> geo_value time_value .pred_lower .pred_upper
#> * <chr> <date> <dbl> <dbl>
#> 1 ak 2021-12-31 -0.366 0.856
#> 2 ca 2021-12-31 -0.284 0.910
#> 3 ny 2021-12-31 -0.301 0.891