Weighted interval score (WIS), a well-known quantile-based approximation of the commonly-used continuous ranked probability score (CRPS). WIS is a proper score, and can be thought of as a distributional generalization of absolute error. For example, see Bracher et al. (2020) for discussion in the context of COVID-19 forecasting.
Usage
weighted_interval_score(
x,
actual,
quantile_levels = NULL,
na_handling = c("impute", "drop", "propagate", "fail"),
...
)
Arguments
- x
A vector of class
quantile_pred
.- actual
double. Actual value(s)
- quantile_levels
probabilities. If specified, the score will be computed at this set of levels. Otherwise, those present in
x
will be used.- na_handling
character. Determines missing values are handled. For
"impute"
, missing values will be calculated if possible using the available quantiles. For"drop"
, explicitly missing values are ignored in the calculation of the score, but implicitly missing values are imputed if possible. For"propogate"
, the resulting score will beNA
if any missing values exist. Finally, ifquantile_levels
is specified,"fail"
will result in the score beingNA
when any required quantile levels (implicit or explicit) do not have corresponding values.- ...
not used
Examples
quantile_levels <- c(.2, .4, .6, .8)
predq1 <- 1:4 #
predq2 <- 8:11
dstn <- quantile_pred(rbind(predq1, predq2), quantile_levels)
actual <- c(3.3, 7.1)
weighted_interval_score(dstn, actual)
#> [1] 0.65 1.90
weighted_interval_score(dstn, actual, c(.25, .5, .75))
#> [1] 0.6833333 1.9833333
# Missing value behaviours
dstn <- quantile_pred(matrix(c(1, 2, NA, 4), nrow = 1), 1:4 / 5)
weighted_interval_score(dstn, 2.5)
#> [1] 0.5
weighted_interval_score(dstn, 2.5, 1:9 / 10)
#> [1] 0.455656
weighted_interval_score(dstn, 2.5, 1:9 / 10, na_handling = "drop")
#> [1] 0.462613
weighted_interval_score(dstn, 2.5, na_handling = "propagate")
#> [1] NA
weighted_interval_score(
quantile_pred(matrix(1:4, nrow = 1), 1:4 / 5),
actual = 2.5,
quantile_levels = 1:9 / 10,
na_handling = "fail"
)
#> [1] NA
# Using some actual forecasts --------
library(dplyr)
training <- covid_case_death_rates %>%
filter(time_value >= "2021-10-01", time_value <= "2021-12-01")
preds <- flatline_forecaster(
training, "death_rate",
flatline_args_list(quantile_levels = c(.01, .025, 1:19 / 20, .975, .99))
)$predictions
actuals <- covid_case_death_rates %>%
filter(time_value == as.Date("2021-12-01") + 7) %>%
select(geo_value, time_value, actual = death_rate)
preds <- left_join(preds, actuals,
by = c("target_date" = "time_value", "geo_value")
) %>%
mutate(wis = weighted_interval_score(.pred_distn, actual))
preds
#> # A tibble: 56 × 7
#> geo_value .pred .pred_distn forecast_date target_date actual wis
#> <chr> <dbl> <qtls(23)> <date> <date> <dbl> <dbl>
#> 1 ak 0.217 [0.217] 2021-12-01 2021-12-08 0.0988 0.0673
#> 2 al 0.119 [0.119] 2021-12-01 2021-12-08 0.174 0.0364
#> 3 ar 0.207 [0.207] 2021-12-01 2021-12-08 0.514 0.196
#> 4 as 0 [0] 2021-12-01 2021-12-08 0 0.0145
#> 5 az 0.485 [0.485] 2021-12-01 2021-12-08 0.826 0.223
#> 6 ca 0.169 [0.169] 2021-12-01 2021-12-08 0.185 0.0278
#> 7 co 0.509 [0.509] 2021-12-01 2021-12-08 0.534 0.0313
#> 8 ct 0.177 [0.177] 2021-12-01 2021-12-08 0.149 0.0301
#> 9 dc 0 [0] 2021-12-01 2021-12-08 0.0200 0.0166
#> 10 de 0.217 [0.217] 2021-12-01 2021-12-08 0.391 0.101
#> # ℹ 46 more rows