Make a parameter adjustment to a step in either an
epi_workflow
or epi_recipe
object.
Usage
adjust_epi_recipe(
x,
which_step,
...,
blueprint = default_epi_recipe_blueprint()
)
# S3 method for class 'epi_workflow'
adjust_epi_recipe(
x,
which_step,
...,
blueprint = default_epi_recipe_blueprint()
)
# S3 method for class 'epi_recipe'
adjust_epi_recipe(
x,
which_step,
...,
blueprint = default_epi_recipe_blueprint()
)
Details
This function can either adjust a step in a epi_recipe
object
or a step from a epi_recipe
object in an epi_workflow
. The step to be
adjusted is indicated by either the step number or name (if a name is used,
it must be unique). In either case, the argument name and update value
must be inputted as ...
. See the examples below for brief
illustrations of the different types of updates.
Examples
library(dplyr)
library(workflows)
#>
#> Attaching package: ‘workflows’
#> The following objects are masked from ‘package:epipredict’:
#>
#> add_model, remove_model, update_model
jhu <- case_death_rate_subset %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_naomit()
wf <- epi_workflow(r, parsnip::linear_reg()) %>% fit(jhu)
latest <- jhu %>%
filter(time_value >= max(time_value) - 14)
# Adjust `step_epi_ahead` to have an ahead value of 14
# in the `epi_workflow`
# Option 1. Using the step number:
wf2 <- wf %>% adjust_epi_recipe(which_step = 2, ahead = 14)
extract_preprocessor(wf2)
#>
#> ── Epi Recipe ──────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> raw: 2
#> geo_value: 1
#> time_value: 1
#>
#> ── Operations
#> 1. Lagging: death_rate by 0, 7, 14
#> 2. Leading: death_rate by 14
#> 3. • Removing rows with NA values in: all_predictors()
#> 4. • Removing rows with NA values in: all_outcomes()
# Option 2. Using the step name:
wf3 <- wf %>% adjust_epi_recipe(which_step = "step_epi_ahead", ahead = 14)
extract_preprocessor(wf3)
#>
#> ── Epi Recipe ──────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> raw: 2
#> geo_value: 1
#> time_value: 1
#>
#> ── Operations
#> 1. Lagging: death_rate by 0, 7, 14
#> 2. Leading: death_rate by 14
#> 3. • Removing rows with NA values in: all_predictors()
#> 4. • Removing rows with NA values in: all_outcomes()
# Adjust `step_epi_ahead` to have an ahead value of 14
# in the `epi_recipe`
# Option 1. Using the step number
r2 <- r %>% adjust_epi_recipe(which_step = 2, ahead = 14)
r2
#>
#> ── Epi Recipe ──────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> raw: 2
#> geo_value: 1
#> time_value: 1
#>
#> ── Operations
#> 1. Lagging: death_rate by 0, 7, 14
#> 2. Leading: death_rate by 14
#> 3. • Removing rows with NA values in: all_predictors()
#> 4. • Removing rows with NA values in: all_outcomes()
# Option 2. Using the step name
r3 <- r %>% adjust_epi_recipe(which_step = "step_epi_ahead", ahead = 14)
r3
#>
#> ── Epi Recipe ──────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> raw: 2
#> geo_value: 1
#> time_value: 1
#>
#> ── Operations
#> 1. Lagging: death_rate by 0, 7, 14
#> 2. Leading: death_rate by 14
#> 3. • Removing rows with NA values in: all_predictors()
#> 4. • Removing rows with NA values in: all_outcomes()