Package index
-
arx_forecaster()
- Direct autoregressive forecaster with covariates
-
cdc_baseline_forecaster()
- Predict the future with the most recent value
-
flatline_forecaster()
- Predict the future with today's value
-
arx_classifier()
- Direct autoregressive classifier with covariates
Forecaster modifications
Constructors to modify forecaster arguments and utilities to produce epi_workflow
objects
-
arx_args_list()
- ARX forecaster argument constructor
-
arx_class_args_list()
- ARX classifier argument constructor
-
cdc_baseline_args_list()
- CDC baseline forecaster argument constructor
-
flatline_args_list()
- Flatline forecaster argument constructor
-
arx_class_epi_workflow()
- Create a template
arx_classifier
workflow
-
arx_fcast_epi_workflow()
- Create a template
arx_forecaster
workflow
-
flusight_hub_formatter()
- Format predictions for submission to FluSight forecast Hub
-
quantile_reg()
- Quantile regression
-
smooth_quantile_reg()
- Smooth quantile regression
-
grf_quantiles
- Random quantile forests via grf
-
epi_recipe()
- Create a epi_recipe for preprocessing data
-
epi_workflow()
- Create an epi_workflow
-
add_epi_recipe()
remove_epi_recipe()
update_epi_recipe()
- Add an
epi_recipe
to a workflow
-
adjust_epi_recipe()
- Adjust a step in an
epi_workflow
orepi_recipe
-
Add_model()
Remove_model()
Update_model()
add_model()
remove_model()
update_model()
- Add a model to an
epi_workflow
-
predict(<epi_workflow>)
- Predict from an epi_workflow
-
fit(<epi_workflow>)
- Fit an
epi_workflow
object
-
augment(<epi_workflow>)
- Augment data with predictions
-
forecast(<epi_workflow>)
- Produce a forecast from an epi workflow
-
step_epi_naomit()
- Unified NA omission wrapper function for recipes
-
step_epi_lag()
step_epi_ahead()
- Create a shifted predictor
-
step_epi_slide()
- Calculate a rolling window transformation
-
step_growth_rate()
- Calculate a growth rate
-
step_lag_difference()
- Calculate a lagged difference
-
step_population_scaling()
- Convert raw scale predictions to per-capita
-
step_training_window()
- Limits the size of the training window to the most recent observations
-
check_enough_train_data()
- Check the dataset contains enough data points.
-
frosting()
- Create frosting for postprocessing predictions
-
add_frosting()
remove_frosting()
update_frosting()
- Add frosting to a workflow
-
adjust_frosting()
- Adjust a layer in an
epi_workflow
orfrosting
-
apply_frosting()
- Apply postprocessing to a fitted workflow
-
extract_frosting()
- Extract the frosting object from a workflow
-
get_test_data()
- Get test data for prediction based on longest lag period
-
tidy(<frosting>)
- Tidy the result of a frosting object
-
add_layer()
- Add layer to a frosting object
-
extract_layers()
is_layer()
validate_layer()
detect_layer()
- Extract, validate, or detect layers of frosting
-
layer_add_forecast_date()
- Postprocessing step to add the forecast date
-
layer_add_target_date()
- Postprocessing step to add the target date
-
layer_cdc_flatline_quantiles()
- CDC Flatline Forecast Quantiles
-
layer_naomit()
- Omit
NA
s from predictions or other columns
-
layer_point_from_distn()
- Converts distributional forecasts to point forecasts
-
layer_population_scaling()
- Convert per-capita predictions to raw scale
-
layer_predict()
- Prediction layer for postprocessing
-
layer_predictive_distn()
- Returns predictive distributions
-
layer_quantile_distn()
- Returns predictive quantiles
-
layer_residual_quantiles()
- Creates predictions based on residual quantiles
-
layer_threshold()
- Lower and upper thresholds for predicted values
-
layer_unnest()
- Unnest prediction list-cols
-
update(<layer>)
- Update post-processing
layer
-
slather()
- Spread a layer of frosting on a fitted workflow
-
autoplot(<epi_workflow>)
autoplot(<canned_epipred>)
- Automatically plot an
epi_workflow
orcanned_epipred
object
-
dist_quantiles()
- A distribution parameterized by a set of quantiles
-
extrapolate_quantiles()
- Summarize a distribution with a set of quantiles
-
nested_quantiles()
- Turn a vector of quantile distributions into a list-col
-
weighted_interval_score()
- Compute weighted interval score
-
pivot_quantiles_longer()
- Pivot columns containing
dist_quantile
longer
-
pivot_quantiles_wider()
- Pivot columns containing
dist_quantile
wider
-
clean_f_name()
- Create short function names
-
case_death_rate_subset
- Subset of JHU daily state cases and deaths
-
state_census
- State population data
-
grad_employ_subset
- Subset of Statistics Canada median employment income for postsecondary graduates