Skip to contents
epipredict 0.1
- simplify
layer_residual_quantiles()
to avoid timesuck in utils::methods()
- rename the
dist_quantiles()
to be more descriptive, breaking change
- removes previous
pivot_quantiles()
(now *_wider()
, breaking change)
- add
pivot_quantiles_wider()
for easier plotting
- add complement
pivot_quantiles_longer()
- add
cdc_baseline_forecaster()
and flusight_hub_formatter()
- add
smooth_quantile_reg()
- improved printing of various methods / internals
- canned forecasters get a class
- fixed quantile bug in
flatline_forecaster()
- add functionality to output the unfit workflow from the canned forecasters
- add quantile_reg()
- clean up documentation bugs
- add smooth_quantile_reg()
- add classifier
- training window step debugged
-
min_train_window
argument removed from canned forecasters
- add forecasters
- implement postprocessing
- vignettes avaliable
- arx_forecaster
- pkgdown
- Publish public for easy navigation
- Two simple forecasters as test beds
- Working vignette
- use
checkmate
for input validation
- refactor quantile extrapolation (possibly creates different results)
- force
target_date
+ forecast_date
handling to match the time_type of the epi_df. allows for annual and weekly data
- add
check_enough_train_data()
that will error if training data is too small
- added
check_enough_train_data()
to arx_forecaster()
-
layer_residual_quantiles()
will now error if any of the residual quantiles are NA
-
*_args_list()
functions now warn if forecast_date + ahead != target_date
- the
predictor
argument in arx_forecaster()
now defaults to the value of the outcome
argument
-
arx_fcast_epi_workflow()
and arx_class_epi_workflow()
now default to trainer = parsnip::logistic_reg()
to match their more canned versions.
- add a
forecast()
method simplify generating forecasts
- refactor
bake.epi_recipe()
and remove epi_juice()
.
- Revise
compat-purrr
to use the r-lang standalone-*
version (via usethis)
- Replaced old version-faithful example in sliding AR & ARX forecasters vignette
-
epi_recipe()
will now warn when given non-epi_df
data
-
layer_predict()
and predict.epi_workflow()
will now appropriately forward ...
args intended for predict.model_fit()
-
bake.epi_recipe()
will now re-infer the geo and time type in case baking the steps has changed the appropriate values
- produce length 0
dist_quantiles()
- add functionality to calculate weighted interval scores for
dist_quantiles()
- Add
step_epi_slide
to produce generic sliding computations over an epi_df
- Add quantile random forests (via grf) as a parsnip engine
- Replace
epi_keys()
with epiprocess::key_colnames()
, #352
- More descriptive error messages from
arg_is_*()
, #287
- Fix bug where
fit()
drops the epi_workflow
class (also error if non-epi_df
data is given to epi_recipe()
), #363
- Try to retain the
epi_df
class during baking to the extent possible, #376