Omit NA
s from predictions or other columns
Usage
layer_naomit(frosting, ..., id = rand_id("naomit"))
Arguments
- frosting
a
frosting
postprocessor- ...
<
tidy-select
> One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions likex:y
can be used to select a range of variables. Typical usage is.pred
to remove any rows withNA
predictions.- id
a random id string
Examples
library(dplyr)
jhu <- case_death_rate_subset %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7)
wf <- epi_workflow(r, linear_reg()) %>% fit(jhu)
f <- frosting() %>%
layer_predict() %>%
layer_naomit(.pred)
wf1 <- wf %>% add_frosting(f)
p <- forecast(wf1)
p
#> An `epi_df` object, 3 x 3 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31 19:08:25.791826
#>
#> # A tibble: 3 × 3
#> geo_value time_value .pred
#> * <chr> <date> <dbl>
#> 1 ak 2021-12-31 0.245
#> 2 ca 2021-12-31 0.313
#> 3 ny 2021-12-31 0.295