quantile_reg()
generates a quantile regression model specification for
the tidymodels framework. Currently, the
only supported engines are "rq", which uses quantreg::rq()
.
Quantile regression is also possible by combining parsnip::rand_forest()
with the grf
engine. See grf_quantiles.
Arguments
- mode
A single character string for the type of model. The only possible value for this model is "regression".
- engine
Character string naming the fitting function. Currently, only "rq" and "grf" are supported.
- quantile_levels
A scalar or vector of values in (0, 1) to determine which quantiles to estimate (default is 0.5).
- method
A fitting method used by
quantreg::rq()
. See the documentation for a list of options.
Examples
library(quantreg)
#> Loading required package: SparseM
tib <- data.frame(y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100))
rq_spec <- quantile_reg(quantile_levels = c(.2, .8)) %>% set_engine("rq")
ff <- rq_spec %>% fit(y ~ ., data = tib)
predict(ff, new_data = tib)
#> # A tibble: 100 × 1
#> .pred
#> <dist>
#> 1 quantiles(0.05)[2]
#> 2 quantiles(-0.05)[2]
#> 3 quantiles(0.3)[2]
#> 4 quantiles(-0.41)[2]
#> 5 quantiles(0.21)[2]
#> 6 quantiles(-0.05)[2]
#> 7 quantiles(-0.3)[2]
#> 8 quantiles(-0.25)[2]
#> 9 quantiles(-0.23)[2]
#> 10 quantiles(0.05)[2]
#> # ℹ 90 more rows