epi_slide_opt
allows sliding an n-timestep data.table::froll
or slider::summary-slide function over variables in an epi_df
object.
These functions tend to be much faster than epi_slide()
. See
vignette("epi_df")
for more examples.
epi_slide_mean
is a wrapper around epi_slide_opt
with .f = datatable::frollmean
.
epi_slide_sum
is a wrapper around epi_slide_opt
with .f = datatable::frollsum
.
Usage
epi_slide_opt(
.x,
.col_names,
.f,
...,
.window_size = NULL,
.align = c("right", "center", "left"),
.prefix = NULL,
.suffix = NULL,
.new_col_names = NULL,
.ref_time_values = NULL,
.all_rows = FALSE
)
epi_slide_mean(
.x,
.col_names,
...,
.window_size = NULL,
.align = c("right", "center", "left"),
.prefix = NULL,
.suffix = NULL,
.new_col_names = NULL,
.ref_time_values = NULL,
.all_rows = FALSE
)
epi_slide_sum(
.x,
.col_names,
...,
.window_size = NULL,
.align = c("right", "center", "left"),
.prefix = NULL,
.suffix = NULL,
.new_col_names = NULL,
.ref_time_values = NULL,
.all_rows = FALSE
)
Arguments
- .x
An
epi_df
object. If ungrouped, we temporarily group bygeo_value
and any columns inother_keys
. If grouped, we make sure the grouping is bygeo_value
andother_keys
.- .col_names
<
tidy-select
> An unquoted column name (e.g.,cases
), multiple column names (e.g.,c(cases, deaths)
), other tidy-select expression, or a vector of characters (e.g.c("cases", "deaths")
). Variable names can be used as if they were positions in the data frame, so expressions likex:y
can be used to select a range of variables.The tidy-selection renaming interface is not supported, and cannot be used to provide output column names; if you want to customize the output column names, use
dplyr::rename
after the slide.- .f
Function; together with
...
specifies the computation to slide..f
must be one ofdata.table
's rolling functions (frollmean
,frollsum
,frollapply
. See data.table::roll) or one ofslider
's specialized sliding functions (slide_mean
,slide_sum
, etc. See slider::summary-slide).The optimized
data.table
andslider
functions can't be directly passed as the computation function inepi_slide
without careful handling to make sure each computation group is made up of the.window_size
dates rather than.window_size
points.epi_slide_opt
(and wrapper functionsepi_slide_mean
andepi_slide_sum
) take care of window completion automatically to prevent associated errors.- ...
Additional arguments to pass to the slide computation
.f
, for example,algo
orna.rm
in data.table functions. You don't need to specify.x
,.window_size
, or.align
(orbefore
/after
for slider functions).- .window_size
The size of the sliding window. The accepted values depend on the type of the
time_value
column in.x
:if time type is
Date
and the cadence is daily, then.window_size
can be an integer (which will be interpreted in units of days) or a difftime with units "days"if time type is
Date
and the cadence is weekly, then.window_size
must be adifftime
with units "weeks"if time type is a
yearmonth
or an integer, then.window_size
must be an integer
- .align
The alignment of the sliding window.
If "right" (default), then the window has its end at the reference time. This is likely the most common use case, e.g.
.window_size=7
and.align="right"
slides over the past week of data.If "left", then the window has its start at the reference time.
If "center", then the window is centered at the reference time. If the window size is odd, then the window will have floor(window_size/2) points before and after the reference time; if the window size is even, then the window will be asymmetric and have one more value before the reference time than after.
- .prefix
Optional
glue::glue
format string; name the slide result column(s) by attaching this prefix to the corresponding input column(s). Some shorthand is supported for basing the output names on.window_size
or other arguments; see "Prefix and suffix shorthand" below.- .suffix
Optional
glue::glue
format string; like.prefix
. The default naming behavior is equivalent to.suffix = "_{.n}{.time_unit_abbr}{.align_abbr}{.f_abbr}"
. Can be used in combination with.prefix
.- .new_col_names
Optional character vector with length matching the number of input columns from
.col_names
; name the slide result column(s) with these names. Cannot be used in combination with.prefix
and/or.suffix
.- .ref_time_values
The time values at which to compute the slides values. By default, this is all the unique time values in
.x
.- .all_rows
If
.all_rows = FALSE
, the default, then the outputepi_df
will have only the rows that had atime_value
in.ref_time_values
. Otherwise, all the rows from.x
are included by with a missing value marker (typically NA, but more technically the result ofvctrs::vec_cast
-ingNA
to the type of the slide computation output).
Value
An epi_df
object with one or more new slide computation columns
added. It will be ungrouped if .x
was ungrouped, and have the same groups
as .x
if .x
was grouped.
Prefix and suffix shorthand
glue::glue
format strings specially interpret content within curly
braces. E.g., glue::glue("ABC{2 + 2}")
evaluates to "ABC4"
. For .prefix
and .suffix
, we provide glue
with some additional variable bindings:
{.n}
will be the number of time steps in the computation corresponding to the.window_size
.{.time_unit_abbr}
will be a lower-case letter corresponding to thetime_type
of.x
{.align_abbr}
will be""
if.align
is the default of"right"
; otherwise, it will be the first letter of.align
{.f_abbr}
will be a character vector containing a short abbreviation for.f
factoring in the input column type(s) for.col_names
See also
epi_slide
for the more general slide function
Examples
library(dplyr)
# Add a column (`cases_7dsum`) containing a 7-day trailing sum on `cases`:
cases_deaths_subset %>%
select(geo_value, time_value, cases) %>%
epi_slide_sum(cases, .window_size = 7)
#> An `epi_df` object, 4,026 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2024-03-20
#>
#> # A tibble: 4,026 × 4
#> geo_value time_value cases cases_7dsum
#> * <chr> <date> <dbl> <dbl>
#> 1 ca 2020-03-01 6 NA
#> 2 ca 2020-03-02 4 NA
#> 3 ca 2020-03-03 6 NA
#> 4 ca 2020-03-04 11 NA
#> 5 ca 2020-03-05 10 NA
#> 6 ca 2020-03-06 18 NA
#> 7 ca 2020-03-07 26 81
#> 8 ca 2020-03-08 19 94
#> 9 ca 2020-03-09 23 113
#> 10 ca 2020-03-10 22 129
#> # ℹ 4,016 more rows
# Add a column (`cases_rate_7dav`) containing a 7-day trailing average on `case_rate`:
covid_case_death_rates_extended %>%
epi_slide_mean(case_rate, .window_size = 7)
#> An `epi_df` object, 37,576 x 5 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31
#>
#> # A tibble: 37,576 × 5
#> geo_value time_value case_rate death_rate case_rate_7dav
#> * <chr> <date> <dbl> <dbl> <dbl>
#> 1 ak 2020-03-01 0 0 NA
#> 2 ak 2020-03-02 0 0 NA
#> 3 ak 2020-03-03 0 0 NA
#> 4 ak 2020-03-04 0 0 NA
#> 5 ak 2020-03-05 0 0 NA
#> 6 ak 2020-03-06 0 0 NA
#> 7 ak 2020-03-07 0 0 0
#> 8 ak 2020-03-08 0 0 0
#> 9 ak 2020-03-09 0 0 0
#> 10 ak 2020-03-10 0 0 0
#> # ℹ 37,566 more rows
# Use a less common specialized slide function:
cases_deaths_subset %>%
epi_slide_opt(cases, slider::slide_min, .window_size = 7)
#> An `epi_df` object, 4,026 x 7 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2024-03-20
#>
#> # A tibble: 4,026 × 7
#> geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#> * <chr> <date> <dbl> <dbl> <dbl> <dbl>
#> 1 ca 2020-03-01 0.00327 0 6 1.29
#> 2 ca 2020-03-02 0.00435 0 4 1.71
#> 3 ca 2020-03-03 0.00617 0 6 2.43
#> 4 ca 2020-03-04 0.00980 0.000363 11 3.86
#> 5 ca 2020-03-05 0.0134 0.000363 10 5.29
#> 6 ca 2020-03-06 0.0200 0.000363 18 7.86
#> 7 ca 2020-03-07 0.0294 0.000363 26 11.6
#> 8 ca 2020-03-08 0.0341 0.000363 19 13.4
#> 9 ca 2020-03-09 0.0410 0.000726 23 16.1
#> 10 ca 2020-03-10 0.0468 0.000726 22 18.4
#> # ℹ 4,016 more rows
#> # ℹ 1 more variable: cases_7dmin <dbl>
# Specify output column names and/or a naming scheme:
cases_deaths_subset %>%
select(geo_value, time_value, cases) %>%
group_by(geo_value) %>%
epi_slide_sum(cases, .window_size = 7, .new_col_names = "case_sum") %>%
ungroup()
#> An `epi_df` object, 4,026 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2024-03-20
#>
#> # A tibble: 4,026 × 4
#> geo_value time_value cases case_sum
#> * <chr> <date> <dbl> <dbl>
#> 1 ca 2020-03-01 6 NA
#> 2 ca 2020-03-02 4 NA
#> 3 ca 2020-03-03 6 NA
#> 4 ca 2020-03-04 11 NA
#> 5 ca 2020-03-05 10 NA
#> 6 ca 2020-03-06 18 NA
#> 7 ca 2020-03-07 26 81
#> 8 ca 2020-03-08 19 94
#> 9 ca 2020-03-09 23 113
#> 10 ca 2020-03-10 22 129
#> # ℹ 4,016 more rows
cases_deaths_subset %>%
select(geo_value, time_value, cases) %>%
group_by(geo_value) %>%
epi_slide_sum(cases, .window_size = 7, .prefix = "sum_") %>%
ungroup()
#> An `epi_df` object, 4,026 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2024-03-20
#>
#> # A tibble: 4,026 × 4
#> geo_value time_value cases sum_cases
#> * <chr> <date> <dbl> <dbl>
#> 1 ca 2020-03-01 6 NA
#> 2 ca 2020-03-02 4 NA
#> 3 ca 2020-03-03 6 NA
#> 4 ca 2020-03-04 11 NA
#> 5 ca 2020-03-05 10 NA
#> 6 ca 2020-03-06 18 NA
#> 7 ca 2020-03-07 26 81
#> 8 ca 2020-03-08 19 94
#> 9 ca 2020-03-09 23 113
#> 10 ca 2020-03-10 22 129
#> # ℹ 4,016 more rows
# Additional settings can be sent to the {data.table} and {slider} functions
# via `...`. This example passes some arguments to `frollmean` settings for
# speed, accuracy, and to allow partially-missing windows:
covid_case_death_rates_extended %>%
epi_slide_mean(
case_rate,
.window_size = 7,
na.rm = TRUE, algo = "exact", hasNA = TRUE
)
#> An `epi_df` object, 37,576 x 5 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31
#>
#> # A tibble: 37,576 × 5
#> geo_value time_value case_rate death_rate case_rate_7dav
#> * <chr> <date> <dbl> <dbl> <dbl>
#> 1 ak 2020-03-01 0 0 0
#> 2 ak 2020-03-02 0 0 0
#> 3 ak 2020-03-03 0 0 0
#> 4 ak 2020-03-04 0 0 0
#> 5 ak 2020-03-05 0 0 0
#> 6 ak 2020-03-06 0 0 0
#> 7 ak 2020-03-07 0 0 0
#> 8 ak 2020-03-08 0 0 0
#> 9 ak 2020-03-09 0 0 0
#> 10 ak 2020-03-10 0 0 0
#> # ℹ 37,566 more rows
# If the more specialized possibilities for `.f` don't cover your needs, you
# can use `epi_slide_opt` with `.f = data.table::frollapply` to apply a
# custom function at the cost of more computation time. See also `epi_slide`
# if you need something even more general.
cases_deaths_subset %>%
select(geo_value, time_value, case_rate_7d_av, death_rate_7d_av) %>%
epi_slide_opt(c(case_rate_7d_av, death_rate_7d_av),
data.table::frollapply,
FUN = median, .window_size = 28,
.suffix = "_{.n}{.time_unit_abbr}_median"
) %>%
print(n = 40)
#> An `epi_df` object, 4,026 x 6 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2024-03-20
#>
#> # A tibble: 4,026 × 6
#> geo_value time_value case_rate_7d_av death_rate_7d_av case_rate_7d_av_28d_m…¹
#> * <chr> <date> <dbl> <dbl> <dbl>
#> 1 ca 2020-03-01 0.00327 0 NA
#> 2 ca 2020-03-02 0.00435 0 NA
#> 3 ca 2020-03-03 0.00617 0 NA
#> 4 ca 2020-03-04 0.00980 0.000363 NA
#> 5 ca 2020-03-05 0.0134 0.000363 NA
#> 6 ca 2020-03-06 0.0200 0.000363 NA
#> 7 ca 2020-03-07 0.0294 0.000363 NA
#> 8 ca 2020-03-08 0.0341 0.000363 NA
#> 9 ca 2020-03-09 0.0410 0.000726 NA
#> 10 ca 2020-03-10 0.0468 0.000726 NA
#> 11 ca 2020-03-11 0.0519 0.00109 NA
#> 12 ca 2020-03-12 0.0639 0.00145 NA
#> 13 ca 2020-03-13 0.0766 0.00109 NA
#> 14 ca 2020-03-14 0.0875 0.00145 NA
#> 15 ca 2020-03-15 0.0947 0.00181 NA
#> 16 ca 2020-03-16 0.144 0.00145 NA
#> 17 ca 2020-03-17 0.167 0.00218 NA
#> 18 ca 2020-03-18 0.221 0.00435 NA
#> 19 ca 2020-03-19 0.275 0.00544 NA
#> 20 ca 2020-03-20 0.350 0.00689 NA
#> 21 ca 2020-03-21 0.385 0.00762 NA
#> 22 ca 2020-03-22 0.480 0.0109 NA
#> 23 ca 2020-03-23 0.559 0.0123 NA
#> 24 ca 2020-03-24 0.684 0.0156 NA
#> 25 ca 2020-03-25 0.806 0.0181 NA
#> 26 ca 2020-03-26 1.05 0.0218 NA
#> 27 ca 2020-03-27 1.20 0.0279 NA
#> 28 ca 2020-03-28 2.22 0.0588 0.0911
#> 29 ca 2020-03-29 1.38 0.0352 0.119
#> 30 ca 2020-03-30 1.74 0.0396 0.155
#> 31 ca 2020-03-31 2.00 0.0432 0.194
#> 32 ca 2020-04-01 2.27 0.0483 0.248
#> 33 ca 2020-04-02 2.50 0.0566 0.312
#> 34 ca 2020-04-03 2.74 0.0639 0.368
#> 35 ca 2020-04-04 1.93 0.0381 0.433
#> 36 ca 2020-04-05 3.26 0.0762 0.519
#> 37 ca 2020-04-06 3.31 0.0806 0.621
#> 38 ca 2020-04-07 3.30 0.0922 0.745
#> 39 ca 2020-04-08 3.38 0.105 0.928
#> 40 ca 2020-04-09 3.18 0.110 1.13
#> # ℹ 3,986 more rows
#> # ℹ abbreviated name: ¹case_rate_7d_av_28d_median
#> # ℹ 1 more variable: death_rate_7d_av_28d_median <dbl>