Constructs a list of arguments for arx_forecaster()
.
Usage
arx_args_list(
lags = c(0L, 7L, 14L),
ahead = 7L,
n_training = Inf,
forecast_date = NULL,
target_date = NULL,
adjust_latency = c("none", "extend_ahead", "extend_lags", "locf"),
warn_latency = TRUE,
quantile_levels = c(0.05, 0.95),
symmetrize = TRUE,
nonneg = TRUE,
quantile_by_key = character(0L),
check_enough_data_n = NULL,
check_enough_data_epi_keys = NULL,
...
)
Arguments
- lags
Vector or List. Positive integers enumerating lags to use in autoregressive-type models (in days). By default, an unnamed list of lags will be set to correspond to the order of the predictors.
- ahead
Integer. Number of time steps ahead (in days) of the forecast date for which forecasts should be produced.
- n_training
Integer. An upper limit for the number of rows per key that are used for training (in the time unit of the
epi_df
).- forecast_date
Date. The date from which the forecast is occurring. The default
NULL
will determine this automatically from eitherthe maximum time value for which there's data if there is no latency adjustment (the default case), or
the
as_of
date ofepi_data
ifadjust_latency
is non-NULL
.
- target_date
Date. The date that is being forecast. The default
NULL
will determine this automatically asforecast_date + ahead
.- adjust_latency
Character. One of the
method
s ofstep_adjust_latency()
, or"none"
(in which case there is no adjustment). If theforecast_date
is after the last day of data, this determines how to shift the model to account for this difference. The options are:"none"
the default, assumes theforecast_date
is the last day of data"extend_ahead"
: increase theahead
by the latency so it's relative to the last day of data. For example, if the last day of data was 3 days ago, the ahead becomesahead+3
."extend_lags"
: increase the lags so they're relative to the actual forecast date. For example, if the lags arec(0,7,14)
and the last day of data was 3 days ago, the lags becomec(3,10,17)
.
- warn_latency
by default,
step_adjust_latency
warns the user if the latency is large. If this isFALSE
, that warning is turned off.- quantile_levels
Vector or
NULL
. A vector of probabilities to produce prediction intervals. These are created by computing the quantiles of training residuals. ANULL
value will result in point forecasts only.- symmetrize
Logical. The default
TRUE
calculates symmetric prediction intervals. This argument only applies when residual quantiles are used. It is not applicable withtrainer = quantile_reg()
, for example.- nonneg
Logical. The default
TRUE
enforces nonnegative predictions by hard-thresholding at 0.- quantile_by_key
Character vector. Groups residuals by listed keys before calculating residual quantiles. See the
by_key
argument tolayer_residual_quantiles()
for more information. The default,character(0)
performs no grouping. This argument only applies when residual quantiles are used. It is not applicable withtrainer = quantile_reg()
, for example.- check_enough_data_n
Integer. A lower limit for the number of rows per epi_key that are required for training. If
NULL
, this check is ignored.- check_enough_data_epi_keys
Character vector. A character vector of column names on which to group the data and check threshold within each group. Useful if training per group (for example, per geo_value).
- ...
Space to handle future expansions (unused).
Examples
arx_args_list()
#> • lags : 0, 7, and 14
#> • ahead : 7
#> • n_training : Inf
#> • quantile_levels : 0.05 and 0.95
#> • forecast_date : "NULL"
#> • target_date : "NULL"
#> • adjust_latency : "none"
#> • warn_latency : TRUE
#> • symmetrize : TRUE
#> • nonneg : TRUE
#> • max_lags : 14
#> • quantile_by_key : "_empty_"
#> • check_enough_data_n : "NULL"
#> • check_enough_data_epi_keys : "NULL"
arx_args_list(symmetrize = FALSE)
#> • lags : 0, 7, and 14
#> • ahead : 7
#> • n_training : Inf
#> • quantile_levels : 0.05 and 0.95
#> • forecast_date : "NULL"
#> • target_date : "NULL"
#> • adjust_latency : "none"
#> • warn_latency : TRUE
#> • symmetrize : FALSE
#> • nonneg : TRUE
#> • max_lags : 14
#> • quantile_by_key : "_empty_"
#> • check_enough_data_n : "NULL"
#> • check_enough_data_epi_keys : "NULL"
arx_args_list(quantile_levels = c(.1, .3, .7, .9), n_training = 120)
#> • lags : 0, 7, and 14
#> • ahead : 7
#> • n_training : 120
#> • quantile_levels : 0.1, 0.3, 0.7, and 0.9
#> • forecast_date : "NULL"
#> • target_date : "NULL"
#> • adjust_latency : "none"
#> • warn_latency : TRUE
#> • symmetrize : TRUE
#> • nonneg : TRUE
#> • max_lags : 14
#> • quantile_by_key : "_empty_"
#> • check_enough_data_n : "NULL"
#> • check_enough_data_epi_keys : "NULL"