This is an autoregressive forecasting model for epiprocess::epi_df data. It does "direct" forecasting, meaning that it estimates a model for a particular target horizon.
Usage
arx_forecaster(
epi_data,
outcome,
predictors = outcome,
trainer = linear_reg(),
args_list = arx_args_list()
)
Arguments
- epi_data
An
epi_df
object- outcome
A character (scalar) specifying the outcome (in the
epi_df
).- predictors
A character vector giving column(s) of predictor variables. This defaults to the
outcome
. However, if manually specified, only those variables specifically mentioned will be used. (Theoutcome
will not be added.) By default, equals the outcome. If manually specified, does not add the outcome variable, so make sure to specify it.- trainer
A
{parsnip}
model describing the type of estimation. For now, we enforcemode = "regression"
.- args_list
A list of customization arguments to determine the type of forecasting model. See
arx_args_list()
.
Value
A list with (1) predictions
an epi_df
of predicted values
and (2) epi_workflow
, a list that encapsulates the entire estimation
workflow
Examples
jhu <- case_death_rate_subset %>%
dplyr::filter(time_value >= as.Date("2021-12-01"))
out <- arx_forecaster(
jhu, "death_rate",
c("case_rate", "death_rate")
)
out <- arx_forecaster(jhu, "death_rate",
c("case_rate", "death_rate"),
trainer = quantile_reg(),
args_list = arx_args_list(quantile_levels = 1:9 / 10)
)