This is an autoregressive forecasting model for
epiprocess::epi_df data. It does "direct"
forecasting, meaning that it estimates a model for a particular target
horizon of the outcome based on the lags of the predictors. See the Get started vignette for some worked examples and
Custom epi_workflows vignette for a
recreation using a custom epi_workflow().
Usage
arx_forecaster(
epi_data,
outcome,
predictors = outcome,
trainer = linear_reg(),
args_list = arx_args_list()
)Arguments
- epi_data
An
epi_dfobject- outcome
A character (scalar) specifying the outcome (in the
epi_df).- predictors
A character vector giving column(s) of predictor variables. This defaults to the
outcome. However, if manually specified, only those variables specifically mentioned will be used, and theoutcomewill not be added.- trainer
A
{parsnip}model describing the type of estimation. For now, we enforcemode = "regression".- args_list
A list of customization arguments to determine the type of forecasting model. See
arx_args_list().
Value
An arx_fcast, with the fields predictions and epi_workflow.
predictions is a tibble of predicted values while epi_workflow() is
the fit workflow used to make those predictions
Examples
jhu <- covid_case_death_rates %>%
dplyr::filter(time_value >= as.Date("2021-12-01"))
out <- arx_forecaster(
jhu,
"death_rate",
c("case_rate", "death_rate")
)
out <- arx_forecaster(jhu,
"death_rate",
c("case_rate", "death_rate"),
trainer = quantile_reg(),
args_list = arx_args_list(quantile_levels = 1:9 / 10)
)
out
#> ══ A basic forecaster of type ARX Forecaster ═══════════════════════════════════
#>
#> This forecaster was fit on 2025-09-19 18:28:34.
#>
#> Training data was an <epi_df> with:
#> • Geography: state,
#> • Time type: day,
#> • Using data up-to-date as of: 2023-03-10.
#> • With the last data available on 2021-12-31
#>
#> ── Predictions ─────────────────────────────────────────────────────────────────
#>
#> A total of 56 predictions are available for
#> • 56 unique geographic regions,
#> • At forecast date: 2021-12-31,
#> • For target date: 2022-01-07,
#>