Constructs a list of arguments for arx_forecaster()
.
Arguments
- lags
Vector or List. Positive integers enumerating lags to use in autoregressive-type models (in days). By default, an unnamed list of lags will be set to correspond to the order of the predictors.
- ahead
Integer. Number of time steps ahead (in days) of the forecast date for which forecasts should be produced.
- n_training
Integer. An upper limit for the number of rows per key that are used for training (in the time unit of the
epi_df
).- forecast_date
Date. The date on which the forecast is created. The default
NULL
will attempt to determine this automatically.- target_date
Date. The date for which the forecast is intended. The default
NULL
will attempt to determine this automatically.- quantile_levels
Vector or
NULL
. A vector of probabilities to produce prediction intervals. These are created by computing the quantiles of training residuals. ANULL
value will result in point forecasts only.- symmetrize
Logical. The default
TRUE
calculates symmetric prediction intervals. This argument only applies when residual quantiles are used. It is not applicable withtrainer = quantile_reg()
, for example.- nonneg
Logical. The default
TRUE
enforces nonnegative predictions by hard-thresholding at 0.- quantile_by_key
Character vector. Groups residuals by listed keys before calculating residual quantiles. See the
by_key
argument tolayer_residual_quantiles()
for more information. The default,character(0)
performs no grouping. This argument only applies when residual quantiles are used. It is not applicable withtrainer = quantile_reg()
, for example.- nafill_buffer
At predict time, recent values of the training data are used to create a forecast. However, these can be
NA
due to, e.g., data latency issues. By default, any missing values will get filled with less recent data. Setting this value toNULL
will result in 1 extra recent row (beyond those required for lag creation) to be used. Note that we require at leastmin(lags)
rows of recent data pergeo_value
to create a prediction. For this reason, settingnafill_buffer < min(lags)
will be treated as additional allowed recent data rather than the total amount of recent data to examine.- check_enough_data_n
Integer. A lower limit for the number of rows per epi_key that are required for training. If
NULL
, this check is ignored.- check_enough_data_epi_keys
Character vector. A character vector of column names on which to group the data and check threshold within each group. Useful if training per group (for example, per geo_value).
- ...
Space to handle future expansions (unused).
Examples
arx_args_list()
#> • lags : 0, 7, and 14
#> • ahead : 7
#> • n_training : Inf
#> • quantile_levels : 0.05 and 0.95
#> • forecast_date : "NULL"
#> • target_date : "NULL"
#> • symmetrize : TRUE
#> • nonneg : TRUE
#> • max_lags : 14
#> • quantile_by_key : "_empty_"
#> • nafill_buffer : Inf
#> • check_enough_data_n : "NULL"
#> • check_enough_data_epi_keys : "NULL"
arx_args_list(symmetrize = FALSE)
#> • lags : 0, 7, and 14
#> • ahead : 7
#> • n_training : Inf
#> • quantile_levels : 0.05 and 0.95
#> • forecast_date : "NULL"
#> • target_date : "NULL"
#> • symmetrize : FALSE
#> • nonneg : TRUE
#> • max_lags : 14
#> • quantile_by_key : "_empty_"
#> • nafill_buffer : Inf
#> • check_enough_data_n : "NULL"
#> • check_enough_data_epi_keys : "NULL"
arx_args_list(quantile_levels = c(.1, .3, .7, .9), n_training = 120)
#> • lags : 0, 7, and 14
#> • ahead : 7
#> • n_training : 120
#> • quantile_levels : 0.1, 0.3, 0.7, and 0.9
#> • forecast_date : "NULL"
#> • target_date : "NULL"
#> • symmetrize : TRUE
#> • nonneg : TRUE
#> • max_lags : 14
#> • quantile_by_key : "_empty_"
#> • nafill_buffer : Inf
#> • check_enough_data_n : "NULL"
#> • check_enough_data_epi_keys : "NULL"