Postprocessing step to add the target date
Source:R/layer_add_target_date.R
layer_add_target_date.Rd
Postprocessing step to add the target date
Usage
layer_add_target_date(
frosting,
target_date = NULL,
id = rand_id("add_target_date")
)
Arguments
- frosting
a
frosting
postprocessor- target_date
The target date to add as a column to the
epi_df
. If there's a forecast date specified in a layer, then it is the forecast date plusahead
(fromstep_epi_ahead
in theepi_recipe
). Otherwise, it is the maximumtime_value
(from the data used in pre-processing, fitting the model, and postprocessing) plusahead
, whereahead
has been specified in preprocessing. The user may override these by specifying a target date of their own (of the form "yyyy-mm-dd").- id
a random id string
Details
By default, this function assumes that a value for ahead
has been specified in a preprocessing step (most likely in
step_epi_ahead
). Then, ahead
is added to the maximum time_value
in the test data to get the target date.
Examples
library(dplyr)
jhu <- case_death_rate_subset %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_naomit()
wf <- epi_workflow(r, linear_reg()) %>% fit(jhu)
# Use ahead + forecast date
f <- frosting() %>%
layer_predict() %>%
layer_add_forecast_date(forecast_date = as.Date("2022-05-31")) %>%
layer_add_target_date() %>%
layer_naomit(.pred)
wf1 <- wf %>% add_frosting(f)
p <- forecast(wf1)
p
#> An `epi_df` object, 0 x 5 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31 19:08:25.791826
#>
#> # A tibble: 0 × 5
#> # ℹ 5 variables: geo_value <chr>, time_value <date>, .pred <dbl>,
#> # forecast_date <date>, target_date <date>
# Use ahead + max time value from pre, fit, post
# which is the same if include `layer_add_forecast_date()`
f2 <- frosting() %>%
layer_predict() %>%
layer_add_target_date() %>%
layer_naomit(.pred)
wf2 <- wf %>% add_frosting(f2)
p2 <- forecast(wf2)
p2
#> An `epi_df` object, 3 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31 19:08:25.791826
#>
#> # A tibble: 3 × 4
#> geo_value time_value .pred target_date
#> * <chr> <date> <dbl> <date>
#> 1 ak 2021-12-31 0.245 2022-01-07
#> 2 ca 2021-12-31 0.313 2022-01-07
#> 3 ny 2021-12-31 0.295 2022-01-07
# Specify own target date
f3 <- frosting() %>%
layer_predict() %>%
layer_add_target_date(target_date = "2022-01-08") %>%
layer_naomit(.pred)
wf3 <- wf %>% add_frosting(f3)
p3 <- forecast(wf3)
p3
#> An `epi_df` object, 3 x 4 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2022-05-31 19:08:25.791826
#>
#> # A tibble: 3 × 4
#> geo_value time_value .pred target_date
#> * <chr> <date> <dbl> <date>
#> 1 ak 2021-12-31 0.245 2022-01-08
#> 2 ca 2021-12-31 0.313 2022-01-08
#> 3 ny 2021-12-31 0.295 2022-01-08