Dengue Digital Surveillance Sensors
| Attribute | Details |
|---|---|
| Source Name | dengue_sensors |
| Data Source | Various digital data streams |
| Geographic Levels | Countries and territories in the Americas (see Geographic Codes) Note: Data availability varies by country. |
| Temporal Granularity | Weekly (Epiweek) |
| Reporting Cadence | Inactive - No longer updated since 2020w32 |
| Temporal Scope Start | 2014w04 |
| License | CC BY |
Overview
This endpoint provides access to Delphi’s digital surveillance sensor estimates for dengue activity. These sensors are designed to provide early indicators of disease prevalence by aggregating indicators from digital data streams, specifically Google Health Trends and internet search query volume.
By tracking these digital indicators, the sensors can help to identify trends and potential outbreaks before official laboratory-confirmed results are released. These sensors were specifically developed to support modeling and forecasting efforts for infectious diseases in countries and territories across the Americas.
General topics not specific to any particular endpoint are discussed in the API overview. Such topics include: contributing, citing, and data licensing.
Note: Restricted access: This endpoint requires authentication.
Indicators
The following indicators are available. Both represent estimated dengue case counts derived from digital data streams.
| Name | Description | Source |
|---|---|---|
ght |
Estimate based on Google Health Trends | GHT |
isch |
Estimate based on Internet Search | n/a |
Table of contents
The API
The base URL is: https://api.delphi.cmu.edu/epidata/dengue_sensors/
Parameters
Required
| Parameter | Description | Type |
|---|---|---|
auth |
authentication token | string |
epiweeks |
epiweeks (see Date Formats) | list of epiweeks |
names |
indicator names (see Indicators) | list of strings |
locations |
country or territory codes (see Geographic Codes) | list of strings |
Response
| Field | Description | Type |
|---|---|---|
result |
result code: 1 = success, 2 = too many results, -2 = no results | integer |
epidata |
list of results | array of objects |
epidata[].location |
country or territory code. See Geographic Codes | string |
epidata[].epiweek |
epiweek (YYYYWW) | integer |
epidata[].name |
indicator name. See Indicators | string |
epidata[].value |
estimated number of dengue cases (see below) | float |
message |
success or error message |
string |
Value Interpretation
The value field for all indicators (ght, isch) represents the estimated number of dengue cases in the specified location and week. These values are generated by fitting digital indicators to official case counts.
Note: The
ghtindicator provided here is a case estimate, which is different from the raw search volume returned by the separate Google Health Trends endpoint.
Example URLs
Dengue Sensors on 2015w01 (Puerto Rico)
https://api.delphi.cmu.edu/epidata/dengue_sensors/?auth=...&locations=pr&epiweeks=201501&names=ght
{
"result": 1,
"epidata": [
{
"location": "pr",
"epiweek": 201501,
"name": "ght",
"value": 103.676
}
],
"message": "success"
}
Code Samples
Libraries are available for R and Python.
The following samples show how to import the library and fetch Dengue Sensors data for Puerto Rico for epiweek 201501.
Install the package using pip:
pip install -e "git+https://github.com/cmu-delphi/epidatpy.git#egg=epidatpy"
# Import
from epidatpy import CovidcastEpidata, EpiDataContext, EpiRange
# Fetch data
epidata = EpiDataContext()
res = epidata.dengue_sensors('auth_token', ['ght'], ['pr'], [201501])
print(res['result'], res['message'], len(res['epidata']))
library(epidatr)
# Fetch data
res <- pvt_dengue_sensors(auth = 'auth_token', names = 'ght', locations = 'pr', epiweeks = 201501)
print(res)
Legacy Clients
We recommend using our client libraries: epidatr for R and epidatpy for Python. Legacy clients are also available for Python, R, and JavaScript.
Optionally install the package using pip(env):
pip install delphi-epidata
# Import
from delphi_epidata import Epidata
# Fetch data
res = Epidata.dengue_sensors('auth_token', ['ght'], ['pr'], [201501])
print(res['result'], res['message'], len(res['epidata']))
Place delphi_epidata.R from this repo next to your R script.
source("delphi_epidata.R")
# Fetch data
res <- Epidata$dengue_sensors(auth = "auth_token", sensors = list("ght"), locations = list("pr"), epiweeks = list(201501))
print(res$message)
print(length(res$epidata))
<!-- Imports -->
<script src="delphi_epidata.js"></script>
<!-- Fetch data -->
<script>
EpidataAsync.dengue_sensors('auth_token', ['ght'], 'pr', [201501]).then((res) => {
console.log(res.result, res.message, res.epidata != null ? res.epidata.length : 0);
});
</script>